Markus Sprecher The Complexity of the P - Matrix Linear Complementarity Problem

نویسندگان

  • Markus Sprecher
  • Bernd Gärtner
چکیده

The linear complementarity problem (LCP) is a useful framework for linear and convex programming and has also many direct applications, e.g. in control theory, nance, algorithms and game theory. In this thesis we consider the P-Matrix linear complementarity problem (P-LCP) for which it is known that there exist a unique solution for every problem instance. However it is not known how to nd the solution e ciently. The main goal of this thesis was to determine the complexity of P-LCP. A conjecture is that P-LCP is complete in the class PPAD (for polynomial parity argument in a directed graph ). We introduce the class PPAD and give reductions from End of the Line to LCP and from LCP to Bimatrix− which is to nd a Nash equilibrium with negative payo s in a two-player game. In the second part of this thesis we consider the Unique sink orientations (USO) generated by P-LCPs and study pivot rules to nd the unique sink. We consider the class of USOs which are generated by tridiagonal matrices. We prove some properties of these USOs and give an algorithm to nd the sink using O(n2) vertex evaluations. Zusammenfassung Das lineare Komplementaritätsproblem (LCP) ist ein nützliches Werkzeug für lineare und konvexe Programmierung und hat selbst auch direkte Anwendungen, z.B. in der Kontrolltheorie, Finanzwirtschaft und in der Spieltheorie. In dieser Arbeit beschäftigen wir uns vor allem mit dem lineraren Komplementaritätsproblem mit P-Matrix für welches bekannt ist, dass es für jede Probleminstanz eine eindeutige Lösung gibt. Es ist allerdings kein schneller Algorithmus bekannt um die Lösung zu nden. Das Hauptziel dieser Arbeit war die Komplexität von P-LCP zu bestimmen. Eine Vermutung ist, dass P-LCP PPAD-vollständig ist. PPAD steht für polynomial parity argument in a directed graph . Wir präsentieren die Klasse PPAD und zeigen eine Reduktion von End of the line nach LCP sowie von LCP zu Bimatrix−, das heisst das Problem ein Nash Gleichgewicht mit negativen Payo s in einem zwei-Spieler Spiel zu nden. Der zweite Teil dieser Arbeit beschäftigt sich mit Unique-Sink-Orientation die von P-LCPs generiert werden und Pivot Regeln um die Senke zu nden. Wir untersuchen die Klasse von Unique-Sink-Orientation die von tridiagonalen Matrizen erzeugt werden. Wir beweisen einige Eigenschaften dieser Orientierungen und präsentieren einen Algorithmus der die Senke in O(n2) Knotenauswertungen ndet.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...

متن کامل

A polynomial-time algorithm for the tridiagonal and Hessenberg P-matrix linear complementarity problem

We give a polynomial-time dynamic programming algorithm for solving the linear complementarity problem with tridiagonal or, more generally, Hessenberg P-matrices. We briefly review three known tractable matrix classes and show that none of them contains all tridiagonal P-matrices.

متن کامل

A Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem

In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.

متن کامل

An improved infeasible‎ ‎interior-point method for symmetric cone linear complementarity‎ ‎problem

We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...

متن کامل

An interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function

In this paper, an interior-point algorithm  for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011